arXiv Analytics

Sign in

arXiv:1105.2722 [math.AP]AbstractReferencesReviewsResources

Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index $s=-1$

Chao Deng, Shangbin Cui

Published 2011-05-13Version 1

This paper is concerned with well-posedness of the Boussinesq system. We prove that the $n$ ($n\ge2$) dimensional Boussinesq system is well-psoed for small initial data $(\vec{u}_0,\theta_0)$ ($\nabla\cdot\vec{u}_0=0$) either in $({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times{B}^{-1}_{p,r}$ or in ${B^{-1,1}_{\infty,\infty}}\times{B}^{-1,\epsilon}_{p,\infty}$ if $r\in[1,\infty]$, $\epsilon>0$ and $p\in(\frac{n}{2},\infty)$, where $B^{s,\epsilon}_{p,q}$ ($s\in\mathbb{R}$, $1\leq p,q\leq\infty$, $\epsilon>0$) is the logarithmically modified Besov space to the standard Besov space $B^{s}_{p,q}$. We also prove that this system is well-posed for small initial data in $({B}^{-1}_{\infty,1}\cap{B^{-1,1}_{\infty,\infty}})\times({B}^{-1}_{\frac{n}{2},1}\cap{B^{-1,1}_{\frac{n}{2},\infty}})$.

Related articles: Most relevant | Search more
arXiv:math/0606389 [math.AP] (Published 2006-06-16)
Optimal gradient estimates and asymptotic behaviour for the Vlasov-Poisson system with small initial data
arXiv:math/0612024 [math.AP] (Published 2006-12-01)
2D Navier-Stokes equation in Besov spaces of negative order
arXiv:1409.8382 [math.AP] (Published 2014-09-30)
Uniqueness of solutions to to Navier Stokes equation with small initial data in $L^{3,\infty}(R^3)$