arXiv Analytics

Sign in

arXiv:1105.2549 [math.CO]AbstractReferencesReviewsResources

Characters of symmetric groups in terms of free cumulants and Frobenius coordinates

Maciej Dołega, Valentin Féray, Piotr Śniady

Published 2011-05-12Version 1

Free cumulants are nice and useful functionals of the shape of a Young diagram, in particular they give the asymptotics of normalized characters of symmetric groups S(n) in the limit n\to\infty. We give an explicit combinatorial formula for normalized characters of the symmetric groups in terms of free cumulants. We also express characters in terms of Frobenius coordinates. Our formulas involve counting certain factorizations of a given permutation. The main tool are Stanley polynomials which give values of characters on multirectangular Young diagrams. R\'esum\'e. Les cumulants libres sont des fonctions agr\'eables et utiles sur l'ensemble des diagrammes de Young, en particulier, ils donnent le comportement asymptotiques des caract\`eres normalis\'es du groupe sym\'etrique S(n) dans la limite n\to\infty. Nous donnons une formule combinatoire explicite pour les caract\`eres normalis\'es du groupe sym\'etrique en fonction des cumulants libres. Nous exprimons \'egalement les caract\`eres en fonction des coordonn\'ees de Frobenius. Nos formules font intervenir le nombre de certaines factorisations d'une permutation donn\'ee. L'outil principal est la famille de polyn\^omes de Stanley donnant les valeurs des caract\`eres sur les diagrammes de Young multirectangulaires.

Journal: Discrete Mathematics and Theoretical Computer Science Proc. AK, 2009, 337-348
Categories: math.CO, math.RT
Subjects: 20C30, 05C30
Related articles: Most relevant | Search more
arXiv:math/0607337 [math.CO] (Published 2006-07-14)
Tabloids and Weighted Sums of Characters of Certain Modules of the Symmetric Groups
arXiv:2505.07098 [math.CO] (Published 2025-05-11)
Generalized Higher Specht Polynomials and Homogeneous Representations of Symmetric Groups
arXiv:math/0403110 [math.CO] (Published 2004-03-05)
Properties of some character tables related to the symmetric groups