arXiv Analytics

Sign in

arXiv:1105.2133 [math.PR]AbstractReferencesReviewsResources

Fluid Limits for an ALOHA-type Model with Impatient Customers

Maria Frolkova, Sergey Foss, Bert Zwart

Published 2011-05-11, updated 2012-11-06Version 3

Random multiple-access protocols of type ALOHA are used to regulate networks with a star configuration where client nodes talk to the hub node at the same frequency (finding a wide range of applications among telecommunication systems, including mobile telephone networks and WiFi networks). Such protocols control who talks at what time sharing the common idea "try to send your data and, if your message collides with another transmission, try resending later". In the present paper, we consider a time-slotted ALOHA model where users are allowed to renege before transmission completion. We focus on the scenario that leads to overload in the absence of impatience. Under mild assumptions, we show that the fluid (or law-of-large-numbers) limit of the system workload coincides a.s. with the unique solution to a certain integral equation. We also demonstrate that the fluid limits for distinct initial conditions converge to the same value as time tends to infinity.

Comments: 31 pages
Journal: Queueing Systems 72 (2012) 69-101
Categories: math.PR
Subjects: 60K25, 60F17, 90B15, 90B22, G.3, C.2.1
Related articles: Most relevant | Search more
arXiv:1301.4360 [math.PR] (Published 2013-01-18, updated 2013-04-15)
Fluid Limits for Bandwidth-Sharing Networks with Rate Constraints
arXiv:0802.2495 [math.PR] (Published 2008-02-18)
Construction of a stationary FIFO queue with impatient customers
arXiv:math/0512660 [math.PR] (Published 2005-12-30, updated 2006-01-01)
Fluid limit of a heavily loaded EDF queue with impatient customers