arXiv:1105.1123 [math.RT]AbstractReferencesReviewsResources
Characterization of simple highest weight modules
Volodymyr Mazorchuk, Kaiming Zhao
Published 2011-05-05, updated 2011-11-28Version 2
We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2506.19625 [math.RT] (Published 2025-06-24)
Generalized Verma modules over sl(m+1) induced from simple highest weight modules
arXiv:1305.4104 [math.RT] (Published 2013-04-29)
Weights of simple highest weight modules over a complex semisimple Lie algebra
arXiv:2005.11536 [math.RT] (Published 2020-05-23)
Gelfand-Kirillov dimensions of simple highest weight modules for types BCD