arXiv Analytics

Sign in

arXiv:1104.0789 [math.AP]AbstractReferencesReviewsResources

Inverse problems with partial data for a magnetic Schrödinger operator in an infinite slab and on a bounded domain

Katsiaryna Krupchyk, Matti Lassas, Gunther Uhlmann

Published 2011-04-05Version 1

In this paper we study inverse boundary value problems with partial data for the magnetic Schr\"odinger operator. In the case of an infinite slab in $R^n$, $n\ge 3$, we establish that the magnetic field and the electric potential can be determined uniquely, when the Dirichlet and Neumann data are given either on the different boundary hyperplanes of the slab or on the same hyperplane. This is a generalization of the results of [41], obtained for the Schr\"odinger operator without magnetic potentials. In the case of a bounded domain in $R^n$, $n\ge 3$, extending the results of [2], we show the unique determination of the magnetic field and electric potential from the Dirichlet and Neumann data, given on two arbitrary open subsets of the boundary, provided that the magnetic and electric potentials are known in a neighborhood of the boundary. Generalizing the results of [31], we also obtain uniqueness results for the magnetic Schr\"odinger operator, when the Dirichlet and Neumann data are known on the same part of the boundary, assuming that the inaccessible part of the boundary is a part of a hyperplane.

Related articles: Most relevant | Search more
arXiv:1702.04327 [math.AP] (Published 2017-02-14)
The Biot-Savart operator of a bounded domain
arXiv:1610.09328 [math.AP] (Published 2016-10-28)
Positive solutions for the fractional Laplacian in the almost critical case in a bounded domain
arXiv:1504.01907 [math.AP] (Published 2015-04-08)
Rigorous Estimates on Balance Laws in Bounded Domains