arXiv Analytics

Sign in

arXiv:1103.5686 [math.CO]AbstractReferencesReviewsResources

Ramsey Properties of Permutations

Julia Böttcher, Jan Foniok

Published 2011-03-29, updated 2012-12-21Version 2

The age of each countable homogeneous permutation forms a Ramsey class. Thus, there are five countably infinite Ramsey classes of permutations.

Comments: 10 pages, 3 figures; v2: updated info on related work + some other minor enhancements (Dec 21, 2012)
Journal: Electron. J. Combin., 20(1), 2013. Paper 2, 10pp
Categories: math.CO
Subjects: 05D10, 05C55, 03C52
Related articles: Most relevant | Search more
arXiv:1910.00311 [math.CO] (Published 2019-10-01)
The Ramsey properties for Grassmannians over $\mathbb R$, $\mathbb C$
arXiv:1307.0027 [math.CO] (Published 2013-06-28)
Splittings and Ramsey Properties of Permutation Classes
arXiv:1606.02056 [math.CO] (Published 2016-06-07)
Ramsey properties of nonlinear Diophantine equations