arXiv:1103.5604 [physics.flu-dyn]AbstractReferencesReviewsResources
Multi-Time Multi-Scale Correlation Functions in Hydrodynamic Turbulence
Luca Biferale, Enrico Calzavarini, Federico Toschi
Published 2011-03-29Version 1
High Reynolds numbers Navier-Stokes equations are believed to break self-similarity concerning both spatial and temporal properties: correlation functions of different orders exhibit distinct decorrelation times and anomalous spatial scaling properties. Here, we present a systematic attempt to measure multi-time and multi-scale correlations functions, by using high Reynolds numbers numerical simulations of fully homogeneous and isotropic turbulent flow. The main idea is to set-up an ensemble of probing stations riding the flow, i.e. measuring correlations in a reference frame centered on the trajectory of distinct fluid particles (the quasi-Lagrangian reference frame introduced by Belinicher & L'vov, Sov. Phys. JETP 66, 303 (1987)). In this way we reduce the large-scale sweeping and measure the non-trivial temporal dynamics governing the turbulent energy transfer from large to small scales. We present evidences of the existence of dynamic multiscaling: multi-time correlation functions are characterized by an infinite set of characteristic times.