arXiv Analytics

Sign in

arXiv:1103.3650 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Screening effects on the excitonic instability in graphene

J. Gonzalez

Published 2011-03-18, updated 2011-04-11Version 2

We investigate the excitonic instability in the theory of Dirac fermions in graphene with long-range Coulomb interaction. We analyze the electron-hole vertex relevant for exciton condensation in the ladder approximation, showing that it blows up at a critical value of the interaction strength \alpha = e^2/4\pi v_F sensitive to further many-body corrections. Under static screening of the interaction, we find that taking into account electron self-energy corrections increases the critical coupling to \alpha_c \approx 2.09, for a number N = 4 of two-component Dirac fermions. We show that the dynamical screening of the interaction has however the opposite effect of enhancing the instability, which turns out to develop then at \alpha_c \approx 0.99 for N = 4, bringing the question of whether that critical value can be reached by the effective coupling in real graphene samples at the low-energy scales of the exciton condensation.

Related articles: Most relevant | Search more
arXiv:1903.08262 [cond-mat.mes-hall] (Published 2019-03-19)
Precursors to Exciton Condensation in Quantum Hall Bilayers
arXiv:2301.01625 [cond-mat.mes-hall] (Published 2022-12-29)
Beginnings of Exciton Condensation in Coronene Analog of Graphene Double Layer
arXiv:2411.03164 [cond-mat.mes-hall] (Published 2024-11-05)
Molecular Origins of Exciton Condensation in Van der Waals Heterostructure Bilayers