arXiv:1103.3458 [math.DS]AbstractReferencesReviewsResources
Local attractor continuation of non-autonomously perturbed systems
Published 2011-03-17Version 1
Using Conley theory we show that local attractors remain (past) attractors under small non-autonomous perturbations. In particular, the attractors of the perturbed systems will have positive invariant neighborhoods and converge upper semicontinuously to the original attractor. The result is split into a finite-dimensional part (locally compact) and an infinite-dimensional part (not necessarily locally compact). The finite-dimensional part will be applicable to bounded random noise, i.e. continuous time random dynamical systems on a locally compact metric space which are uniformly close the unperturbed deterministic system. The "closeness" will be defined via a (simpler version of) convergence coming from singular perturbations theory.