arXiv Analytics

Sign in

arXiv:1103.2144 [quant-ph]AbstractReferencesReviewsResources

Sideband Cooling Micromechanical Motion to the Quantum Ground State

J. D. Teufel, T. Donner, Dale Li, J. H. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds

Published 2011-03-10Version 1

The advent of laser cooling techniques revolutionized the study of many atomic-scale systems. This has fueled progress towards quantum computers by preparing trapped ions in their motional ground state, and generating new states of matter by achieving Bose-Einstein condensation of atomic vapors. Analogous cooling techniques provide a general and flexible method for preparing macroscopic objects in their motional ground state, bringing the powerful technology of micromechanics into the quantum regime. Cavity opto- or electro-mechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime, less than a single quantum of motion, has been elusive because sideband cooling has not sufficiently overwhelmed the coupling of mechanical systems to their hot environments. Here, we demonstrate sideband cooling of the motion of a micromechanical oscillator to the quantum ground state. Entering the quantum regime requires a large electromechanical interaction, which is achieved by embedding a micromechanical membrane into a superconducting microwave resonant circuit. In order to verify the cooling of the membrane motion into the quantum regime, we perform a near quantum-limited measurement of the microwave field, resolving this motion a factor of 5.1 from the Heisenberg limit. Furthermore, our device exhibits strong-coupling allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass.

Related articles: Most relevant | Search more
arXiv:2301.08156 [quant-ph] (Published 2023-01-19)
A phonon laser in the quantum regime
T. Behrle et al.
arXiv:1011.0290 [quant-ph] (Published 2010-11-01)
Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
arXiv:2408.06228 [quant-ph] (Published 2024-08-12)
Response of the Quantum Ground State to a Parametric Drive