arXiv Analytics

Sign in

arXiv:1102.5060 [math.MG]AbstractReferencesReviewsResources

Rigidity of spherical codes

Henry Cohn, Yang Jiao, Abhinav Kumar, Salvatore Torquato

Published 2011-02-24, updated 2012-04-06Version 2

A packing of spherical caps on the surface of a sphere (that is, a spherical code) is called rigid or jammed if it is isolated within the space of packings. In other words, aside from applying a global isometry, the packing cannot be deformed. In this paper, we systematically study the rigidity of spherical codes, particularly kissing configurations. One surprise is that the kissing configuration of the Coxeter-Todd lattice is not jammed, despite being locally jammed (each individual cap is held in place if its neighbors are fixed); in this respect, the Coxeter-Todd lattice is analogous to the face-centered cubic lattice in three dimensions. By contrast, we find that many other packings have jammed kissing configurations, including the Barnes-Wall lattice and all of the best kissing configurations known in four through twelve dimensions. Jamming seems to become much less common for large kissing configurations in higher dimensions, and in particular it fails for the best kissing configurations known in 25 through 31 dimensions. Motivated by this phenomenon, we find new kissing configurations in these dimensions, which improve on the records set in 1982 by the laminated lattices.

Comments: 39 pages, 8 figures
Journal: Geometry & Topology 15 (2011), 2235-2273
Categories: math.MG
Subjects: 52C25, 52C17
Related articles: Most relevant | Search more
arXiv:0708.3947 [math.MG] (Published 2007-08-29, updated 2008-05-14)
Optimality and uniqueness of the (4,10,1/6) spherical code
arXiv:2202.11358 [math.MG] (Published 2022-02-23)
Packing and covering in higher dimensions
arXiv:0902.1306 [math.MG] (Published 2009-02-08)
Extension of One-Dimensional Proximity Regions to Higher Dimensions