arXiv:1102.2883 [math.CO]AbstractReferencesReviewsResources
Contingency tables with uniformly bounded entries
Published 2011-02-14Version 1
We consider nonnegative integer matrices with specified row and column sums and upper bounds on the entries. We show that the logarithm of the number of such matrices is approximated by a concave function of the row and column sums. We give efficiently computable estimators for this function, including one suggested by a maximum-entropy random model; we show that these estimators are asymptotically exact as the dimension of the matrices goes to infinity. We finish by showing that, for kappa >= 2 and for sufficiently small row and column sums, the number of matrices with these row and column sums and with entries <= kappa is greater by an exponential factor than predicted by a heuristic of independence.