arXiv:1102.2769 [math.DS]AbstractReferencesReviewsResources
Preperiodic points for families of polynomials
Dragos Ghioca, Liang-Chung Hsia, Thomas Tucker
Published 2011-02-14Version 1
Let $a(\lambda)$ and $b(\lambda)$ be two polynomials with coefficients in complex numbers and let $f_{\lamb$ be a one-parameter family of polynomials indexed by all complex numbers $\lambda$. We study whether there exist infinitely many complex numbers $\lambda$ such that both $a(\lambda)$ and $b(\lambda)$ are preperiodic for $f_{\lambda}$.
Related articles: Most relevant | Search more
arXiv:2407.10894 [math.DS] (Published 2024-07-15)
The geometry of preperiodic points in families of maps on $\mathbb{P}^N$
arXiv:2212.13215 [math.DS] (Published 2022-12-26)
Dynamics on $\mathbb{P}^1$: preperiodic points and pairwise stability
Preperiodic points and unlikely intersections