arXiv:1102.2630 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Magnetoresistance through a single molecule
Stefan Schmaus, Alexei Bagrets, Yasmine Nahas, Toyo K. Yamada, Annika Bork, Martin Bowen, Eric Beaurepaire, Ferdinand Evers, Wulf Wulfhekel
Published 2011-02-13Version 1
The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.