arXiv Analytics

Sign in

arXiv:1102.2062 [math.FA]AbstractReferencesReviewsResources

The splitting lemmas for nonsmooth functionals on Hilbert spaces

Guangcun Lu

Published 2011-02-10, updated 2012-11-07Version 2

The usual Gromoll-Meyer's generalized Morse lemma near degenerate critical points on Hilbert spaces, so called splitting lemma, is stated for at least $C^2$-smooth functionals. In this paper we establish a splitting theorem and a shifting theorem for a class of continuously directional differentiable functionals (lower than $C^1$) on a Hilbert space $H$ which have higher smoothness (but lower than $C^2$) on a densely and continuously imbedded Banach space $X\subset H$ near a critical point lying in $X$. (This splitting theorem generalize almost all previous ones to my knowledge). Moreover, a new theorem of Poincar\'e-Hopf type and a relation between critical groups of the functional on $H$ and $X$ are given. The corresponding version at critical submanifolds is presented. We also generalize the Bartsch-Li's splitting lemma at infinity in \cite{BaLi} and some variants of it to a class of continuously directional differentiable functionals on Hilbert spaces. Our proof methods are to combine the proof ideas of the Morse-Palais lemma due to Duc-Hung-Khai \cite{DHK} with some techniques from \cite{JM, Skr, Va1}. Our theory is applicable to the Lagrangian system on compact manifolds and boundary value problems for a large class of nonlinear higher order elliptic equations.

Comments: This paper has been withdrawn by the author. 109 pages. This paper has been withdrawn since it got split into 3 parts
Categories: math.FA, math.GT
Subjects: 58E05, 35A15
Related articles: Most relevant | Search more
arXiv:1211.2127 [math.FA] (Published 2012-11-06, updated 2014-06-11)
The splitting lemmas for nonsmooth functionals on Hilbert spaces I
arXiv:1211.2128 [math.FA] (Published 2012-11-06, updated 2015-01-25)
The splitting lemmas for nonsmooth functionals on Hilbert spaces II. The case at infinity
arXiv:0708.1657 [math.FA] (Published 2007-08-13, updated 2008-04-30)
Some inequalities for $(α, β)$-normal operators in Hilbert spaces