arXiv:1102.0787 [math.AG]AbstractReferencesReviewsResources
On the canonical map of surfaces with q>=6
Margarida Mendes Lopes, Rita Pardini, Gian Pietro Pirola
Published 2011-02-03, updated 2011-04-04Version 2
We carry out an analysis of the canonical system of a minimal complex surface of general type with irregularity q>0. Using this analysis we are able to sharpen in the case q>0 the well known Castelnuovo inequality K^2>=3p_g+q-7. Then we turn to the study of surfaces with p_g=2q-3 and no fibration onto a curve of genus >1. We prove that for q>=6 the canonical map is birational. Combining this result with the analysis of the canonical system, we also prove the inequality: K^2>=7\chi+2. This improves an earlier result of the first and second author [M.Mendes Lopes and R.Pardini, On surfaces with p_g=2q-3, Adv. in Geom. 10 (3) (2010), 549-555].