arXiv:1101.2523 [math.CA]AbstractReferencesReviewsResources
Turán type inequalities for Krätzel functions
Árpád Baricz, Dragana Jankov, Tibor K. Pogány
Published 2011-01-13Version 1
Complete monotonicity, Laguerre and Tur\'an type inequalities are established for the so-called Kr\"atzel function $Z_{\rho}^{\nu},$ defined by $$Z_{\rho}^{\nu}(u)=\int_0^{\infty}t^{\nu-1}e^{-t^{\rho}-\frac{u}{t}}\dt,$$ where $u>0$ and $\rho,\nu\in\mathbb{R}.$ Moreover, we prove the complete monotonicity of a determinant function of which entries involve the Kr\"atzel function.
Comments: 9 pages
Journal: Journal of Mathematical Analysis and Applications 388(2) (2012) 716-724
Categories: math.CA
Keywords: turán type inequalities, krätzel functions, complete monotonicity, turan type inequalities
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1401.1430 [math.CA] (Published 2014-01-07)
Turán type inequalities for Struve functions
Turán type inequalities for Tricomi confluent hypergeometric functions
Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions