arXiv Analytics

Sign in

arXiv:1101.2523 [math.CA]AbstractReferencesReviewsResources

Turán type inequalities for Krätzel functions

Árpád Baricz, Dragana Jankov, Tibor K. Pogány

Published 2011-01-13Version 1

Complete monotonicity, Laguerre and Tur\'an type inequalities are established for the so-called Kr\"atzel function $Z_{\rho}^{\nu},$ defined by $$Z_{\rho}^{\nu}(u)=\int_0^{\infty}t^{\nu-1}e^{-t^{\rho}-\frac{u}{t}}\dt,$$ where $u>0$ and $\rho,\nu\in\mathbb{R}.$ Moreover, we prove the complete monotonicity of a determinant function of which entries involve the Kr\"atzel function.

Comments: 9 pages
Journal: Journal of Mathematical Analysis and Applications 388(2) (2012) 716-724
Categories: math.CA
Subjects: 33C15, 26D07
Related articles: Most relevant | Search more
arXiv:1401.1430 [math.CA] (Published 2014-01-07)
Turán type inequalities for Struve functions
arXiv:1110.4699 [math.CA] (Published 2011-10-21, updated 2012-02-25)
Turán type inequalities for Tricomi confluent hypergeometric functions
arXiv:1210.2012 [math.CA] (Published 2012-10-07, updated 2012-10-12)
Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions