arXiv Analytics

Sign in

arXiv:1101.1928 [math.DG]AbstractReferencesReviewsResources

Orthogonality of Homogeneous geodesics on the tangent bundle

R. Chavosh Khatamy

Published 2011-01-10Version 1

Let $\xi=(G\times_{K} \mathcal{G} / \mathcal{K}, \rho_{\xi}, \emph{G} / \emph{K},\mathcal{G} / \mathcal{K})$ be the associated bundle and $\tau_{G/K}=(T_{G/K},\pi_{G/K},G/K, \textrm{R}^{m})$ be the tangent bundle of special examples of odd dimension solvable Lie groups equipped with left invariant Riemannian metric. In this paper we prove some conditions about the existence of homogeneous geodesic on the base space of $\tau_{G/K}$ and homogeneous (geodesic) vectors on the fiber space of $\xi$ .

Related articles: Most relevant | Search more
arXiv:1710.02407 [math.DG] (Published 2017-10-06)
On the Existence of Homogeneous Geodesics in Homogeneous $(α,β)$-Spaces
arXiv:2202.09085 [math.DG] (Published 2022-02-18)
Homogeneous geodesics in sub-Riemannian geometry
arXiv:1703.01199 [math.DG] (Published 2017-03-03)
The affine approach to homogeneous geodesics in homogeneous Finsler spaces