arXiv Analytics

Sign in

arXiv:1012.5088 [math.AP]AbstractReferencesReviewsResources

Local well-posedness for the Sixth-Order Boussinesq Equation

Luiz Gustavo Farah, Amin Esfahani

Published 2010-12-22Version 1

This work studies the local well-posedness of the initial-value problem for the nonlinear sixth-order Boussinesq equation $u_{tt}=u_{xx}+\beta u_{xxxx}+u_{xxxxxx}+(u^2)_{xx}$, where $\beta=\pm1$. We prove local well-posedness with initial data in non-homogeneous Sobolev spaces $H^s(\R)$ for negative indices of $s \in \R$.

Comments: 16 pages. Submitted
Journal: Journal of Mathematical Analysis and Applications, Volume 385, Issue 1, 1 January 2012, Pages 230-242
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:math/0505434 [math.AP] (Published 2005-05-20, updated 2006-03-21)
Quasi-geostrophic equations with initial data in Banach spaces of local measures
arXiv:0906.3915 [math.AP] (Published 2009-06-22, updated 2009-08-07)
On the periodic "good" Boussinesq equation
arXiv:0904.2820 [math.AP] (Published 2009-04-18, updated 2011-08-18)
Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L^2(T)