arXiv:1012.1130 [math.DS]AbstractReferencesReviewsResources
Random Sequences and Pointwise Convergence of Multiple Ergodic Averages
Nikos Frantzikinakis, Emmanuel Lesigne, Mate Wierdl
Published 2010-12-06, updated 2011-04-16Version 3
We prove pointwise convergence, as $N\to \infty$, for the multiple ergodic averages $\frac{1}{N}\sum_{n=1}^N f(T^nx)\cdot g(S^{a_n}x)$, where $T$ and $S$ are commuting measure preserving transformations, and $a_n$ is a random version of the sequence $[n^c]$ for some appropriate $c>1$. We also prove similar mean convergence results for averages of the form $\frac{1}{N}\sum_{n=1}^N f(T^{a_n}x)\cdot g(S^{a_n}x)$, as well as pointwise results when $T$ and $S$ are powers of the same transformation. The deterministic versions of these results, where one replaces $a_n$ with $[n^c]$, remain open, and we hope that our method will indicate a fruitful way to approach these problems as well.