arXiv:1011.2000 [math.CO]AbstractReferencesReviewsResources
Vertex subsets with minimal width and dual width in $Q$-polynomial distance-regular graphs
Published 2010-11-09Version 1
We study $Q$-polynomial distance-regular graphs from the point of view of what we call descendents, that is to say, those vertex subsets with the property that the width $w$ and dual width $w^*$ satisfy $w+w^*=d$, where $d$ is the diameter of the graph. We show among other results that a nontrivial descendent with $w\ge 2$ is convex precisely when the graph has classical parameters. The classification of descendents has been done for the 5 classical families of graphs associated with short regular semilattices. We revisit and characterize these families in terms of posets consisting of descendents, and extend the classification to all of the 15 known infinite families with classical parameters and with unbounded diameter.