arXiv Analytics

Sign in

arXiv:1011.1391 [math.NT]AbstractReferencesReviewsResources

On Karatsuba's Problem Concerning the Divisor Function $τ(n)$

M. A. Korolev

Published 2010-11-05Version 1

We study an asymptotic behavior of the sum $\sum\limits_{n\le x}\frac{\D \tau(n)}{\D \tau(n+a)}$. Here $\tau(n)$ denotes the number of divisors of $n$ and $a\ge 1$ is a fixed integer.

Comments: 32 pages
Journal: Monatsh. Math.168(3-4)(2012), 403-441
Categories: math.NT
Subjects: 11M06, 11M26
Related articles: Most relevant | Search more
arXiv:0708.1601 [math.NT] (Published 2007-08-12, updated 2009-01-19)
On the mean square of the divisor function in short intervals
arXiv:1406.3698 [math.NT] (Published 2014-06-14, updated 2016-01-16)
On an asymptotic behavior of the divisor function $τ(n)$
arXiv:1311.4041 [math.NT] (Published 2013-11-16, updated 2014-03-23)
The Mean Square of Divisor Function