arXiv Analytics

Sign in

arXiv:1011.0358 [math.AP]AbstractReferencesReviewsResources

Finite dimensional reduction and convergence to equilibrium for incompressible Smectic-A liquid crystal flows

Antonio Segatti, Hao Wu

Published 2010-11-01Version 1

We consider a hydrodynamic system that models the Smectic-A liquid crystal flow. The model consists of the Navier-Stokes equation for the fluid velocity coupled with a fourth-order equation for the layer variable $\vp$, endowed with periodic boundary conditions. We analyze the long-time behavior of the solutions within the theory of infinite-dimensional dissipative dynamical systems. We first prove that in 2D, the problem possesses a global attractor $\mathcal{A}$ in certain phase space. Then we establish the existence of an exponential attractor $\mathcal{M}$ which entails that the global attractor $\mathcal{A}$ has finite fractal dimension. Moreover, we show that each trajectory converges to a single equilibrium by means of a suitable Lojasiewicz--Simon inequality. Corresponding results in 3D are also discussed.

Journal: SIAM J. Math. Anal., 43(6) (2011), 2445-2481
Categories: math.AP
Subjects: 35B41, 35Q35, 76A15, 76D05
Related articles: Most relevant | Search more
arXiv:0912.4121 [math.AP] (Published 2009-12-21)
Convergence of approximate deconvolution models to the filtered Navier-Stokes Equations
arXiv:1205.5563 [math.AP] (Published 2012-05-24, updated 2013-04-30)
On the convergence of statistical solutions of the 3D Navier-Stokes-$α$ model as $α$ vanishes
arXiv:math/0607530 [math.AP] (Published 2006-07-21)
Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus