arXiv:1010.4296 [astro-ph.HE]AbstractReferencesReviewsResources
Jets at lowest mass accretion rates
Dipankar Maitra, Andrew Cantrell, Sera Markoff, Heino Falcke, Jon Miller, Charles Bailyn
Published 2010-10-20Version 1
We present results of recent observations and theoretical modeling of data from black holes accreting at very low luminosities (L/L_Edd ~ 10^{-8}). We discuss our newly developed time-dependent model for episodic ejection of relativistic plasma within a jet framework, and a successful application of this model to describe the origin of radio flares seen in Sgr A*, the Galactic center black hole. Both the observed time lags and size-frequency relationships are reproduced well by the model. We also discuss results from new Spitzer data of the stellar black hole X-ray binary system A0620-00. Complemented by long term SMARTS monitoring, these observations indicate that once the contribution from the accretion disk and the donor star are properly included, the residual mid-IR spectral energy distribution of A0620-00 is quite flat and consistent with a non-thermal origin. The results above suggest that a significant fraction of the observed spectral energy distribution originating near black holes accreting at low luminosities could result from a mildly relativistic outflow. The fact that these outflows are seen in both stellar-mass black holes as well as in supermassive black holes at the heart of AGNs strengthens our expectation that accretion and jet physics scales with mass.