arXiv:1009.4995 [math.CO]AbstractReferencesReviewsResources
Kolmogorov complexity, Lovasz local lemma and critical exponents
Published 2010-09-25Version 1
D. Krieger and J. Shallit have proved that every real number greater than 1 is a critical exponent of some sequence. We show how this result can be derived from some general statements about sequences whose subsequences have (almost) maximal Kolmogorov complexity. In this way one can also construct a sequence that has no "approximate" fractional powers with exponent that exceeds a given value.
Journal: Andrey Yu. Rumyantsev, Kolmogorov Complexity, Lov\'asz Local Lemma and Critical Exponents, Springer, Lecture Notes in Computer Science, Volume 4649 / 2007, CSR 2007, pp. 349--355
Keywords: lovasz local lemma, critical exponent, maximal kolmogorov complexity, real number greater, general statements
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1610.09653 [math.CO] (Published 2016-10-30)
New bounds for the Moser-Tardos distribution: Beyond the Lovasz Local Lemma
arXiv:1504.04069 [math.CO] (Published 2015-04-15)
Critical exponents of graphs
An extension of the Moser-Tardos algorithmic local lemma