arXiv Analytics

Sign in

arXiv:1008.3256 [cond-mat.dis-nn]AbstractReferencesReviewsResources

Anderson localisation in tight-binding models with flat bands

J. T. Chalker, T. S. Pickles, Pragya Shukla

Published 2010-08-19, updated 2010-10-01Version 2

We consider the effect of weak disorder on eigenstates in a special class of tight-binding models. Models in this class have short-range hopping on periodic lattices; their defining feature is that the clean systems have some energy bands that are dispersionless throughout the Brillouin zone. We show that states derived from these flat bands are generically critical in the presence of weak disorder, being neither Anderson localised nor spatially extended. Further, we establish a mapping between this localisation problem and the one of resonances in random impedance networks, which previous work has suggested are also critical. Our conclusions are illustrated using numerical results for a two-dimensional lattice, known as the square lattice with crossings or the planar pyrochlore lattice.

Comments: 5 pages, 3 figures, as published (this version includes minor corrections)
Journal: Phys. Rev. B 82, 104209 (2010)
Categories: cond-mat.dis-nn
Subjects: 71.23.An
Related articles: Most relevant | Search more
arXiv:1311.0780 [cond-mat.dis-nn] (Published 2013-11-04)
The renormalization flow of the hierarchical Anderson model at weak disorder
arXiv:cond-mat/9509073 (Published 1995-09-13, updated 1997-10-26)
Paramagnons, weak disorder and positive giant magnetoresistance
arXiv:2102.00161 [cond-mat.dis-nn] (Published 2021-01-30)
Localization properties in Lieb lattices and their extensions