arXiv:1007.3658 [math.DG]AbstractReferencesReviewsResources
VB-groupoids and representation theory of Lie groupoids
Alfonso Gracia-Saz, Rajan Amit Mehta
Published 2010-07-21, updated 2015-01-26Version 5
A VB-groupoid is a Lie groupoid equipped with a compatible linear structure. In this paper, we describe a correspondence, up to isomorphism, between VB-groupoids and 2-term representations up to homotopy of Lie groupoids. Under this correspondence, the tangent bundle of a Lie groupoid G corresponds to the "adjoint representation" of G. The value of this point of view is that the tangent bundle is canonical, whereas the adjoint representation is not. We define a cochain complex that is canonically associated to any VB-groupoid. The cohomology of this complex is isomorphic to the groupoid cohomology with values in the corresponding representations up to homotopy. When applied to the tangent bundle of a Lie groupoid, this construction produces a canonical complex that computes the cohomology with values in the adjoint representation. Finally, we give a classification of regular 2-term representations up to homotopy. By considering the adjoint representation, we find a new cohomological invariant associated to regular Lie groupoids.