arXiv Analytics

Sign in

arXiv:1007.1854 [astro-ph.GA]AbstractReferencesReviewsResources

Ammonia and CO observations toward low-luminosity 6.7-GHz methanol masers

Y. W. Wu, Y. Xu, J. D. Pandian, J. Yang, C. Henkel, K. M. Menten, S. B. Zhang

Published 2010-07-12Version 1

To investigate whether distinctions exist between low and high-luminosity Class II 6.7-GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH3(1,1), (2,2), (3,3), (4,4) and 12CO(1-0) transitions, towards a sample of 9 low-luminosity 6.7-GHz masers, and 12CO (1-0) observations towards a sample of 8 high-luminosity 6.7-GHz masers, for which we already had NH3 spectral line data. Emission in the NH3 (1,1), (2,2) and (3,3) transitions was detected in 8 out of 9 low-luminosity maser sources, in which 14 cores were identified. We derive densities, column densities, temperatures, core sizes and masses of both low and high-luminosity maser regions. Comparative analysis of the physical quantities reveals marked distinctions between the low-luminosity and high-luminosity groups: in general, cores associated with high-luminosity 6.7-GHz masers are larger and more massive than those traced by low-luminosity 6.7-GHz masers; regions traced by the high-luminosity masers have larger column densities but lower densities than those of the low-luminosity maser regions. Further, strong correlations between 6.7-GHz maser luminosity and NH3(1,1) and (2,2) line widths are found, indicating that internal motions in high-luminosity maser regions are more energetic than those in low-luminosity maser regions. A 12CO (1-0) outflow analysis also shows distinctions in that outflows associated with high-luminosity masers have wider line wings and larger sizes than those associated with low-luminosity masers.

Related articles: Most relevant | Search more
arXiv:1102.3966 [astro-ph.GA] (Published 2011-02-19)
On the methanol masers in G9.62+0.20E and G188.95+0.89
arXiv:2407.11657 [astro-ph.GA] (Published 2024-07-16)
Hyperfine structure of the methanol molecule as traced by Class I methanol masers
arXiv:1003.0938 [astro-ph.GA] (Published 2010-03-04)
New 9.9-GHz methanol masers