arXiv:1007.0786 [math.CO]AbstractReferencesReviewsResources
Injective colorings of sparse graphs
Daniel W. Cranston, Seog-Jin Kim, Gexin Yu
Published 2010-07-05Version 1
Let $mad(G)$ denote the maximum average degree (over all subgraphs) of $G$ and let $\chi_i(G)$ denote the injective chromatic number of $G$. We prove that if $mad(G) \leq 5/2$, then $\chi_i(G)\leq\Delta(G) + 1$; and if $mad(G) < 42/19$, then $\chi_i(G)=\Delta(G)$. Suppose that $G$ is a planar graph with girth $g(G)$ and $\Delta(G)\geq 4$. We prove that if $g(G)\geq 9$, then $\chi_i(G)\leq\Delta(G)+1$; similarly, if $g(G)\geq 13$, then $\chi_i(G)=\Delta(G)$.
Comments: 10 pages
Journal: Discrete Math. Vol. 310, no. 21, 2010, pp. 2965-2973
Categories: math.CO
Subjects: 05C15
Keywords: sparse graphs, injective colorings, maximum average degree, injective chromatic number, planar graph
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1510.03381 [math.CO] (Published 2015-10-12)
I,F-partitions of Sparse Graphs
arXiv:1007.1615 [math.CO] (Published 2010-07-09)
Linear Choosability of Sparse Graphs
3-choosability of planar graphs with (<=4)-cycles far apart