arXiv Analytics

Sign in

arXiv:1006.5208 [math.GR]AbstractReferencesReviewsResources

Algebraic entropy of generalized shifts on direct products

Anna Giordano Bruno

Published 2010-06-27Version 1

For a set $\Gamma$, a function $\lambda:\Gamma\to \Gamma$ and a non-trivial abelian group $K$, the generalized shift $\sigma_\lambda:K^\Gamma\to K^\Gamma$ is defined by $(x_i)_{i\in \Gamma}\mapsto (x_{\lambda(i)})_{i\in\Gamma}$. In this paper we compute the algebraic entropy of $\sigma_\lambda$; it is either zero or infinite, depending exclusively on the properties of $\lambda$.

Comments: 16 pages
Journal: Comm. Algebra 38 (11) (2010), 4155-4174
Categories: math.GR
Related articles: Most relevant | Search more
arXiv:math/0404075 [math.GR] (Published 2004-04-05)
Algebraic entropy of elementary amenable groups
arXiv:1607.04088 [math.GR] (Published 2016-07-14)
Virtual pro-$p$ properties of 3-manifold groups
arXiv:1612.01242 [math.GR] (Published 2016-12-05)
Properties of random nilpotent groups