arXiv:1006.2129 [cond-mat.dis-nn]AbstractReferencesReviewsResources
On the critical behavior of the Susceptible-Infected-Recovered (SIR) model on a square lattice
Published 2010-06-10, updated 2010-10-27Version 2
By means of numerical simulations and epidemic analysis, the transition point of the stochastic, asynchronous Susceptible-Infected-Recovered (SIR) model on a square lattice is found to be c_0=0.1765005(10), where c is the probability a chosen infected site spontaneously recovers rather than tries to infect one neighbor. This point corresponds to an infection/recovery rate of lambda_c = (1-c_0)/c_0 = 4.66571(3) and a net transmissibility of (1-c_0)/(1 + 3 c_0) = 0.538410(2), which falls between the rigorous bounds of the site and bond thresholds. The critical behavior of the model is consistent with the 2-d percolation universality class, but local growth probabilities differ from those of dynamic percolation cluster growth, as is demonstrated explicitly.