arXiv:1006.1723 [math.NT]AbstractReferencesReviewsResources
On the value distribution and moments of the Epstein zeta function to the right of the critical strip
Published 2010-06-09, updated 2010-09-08Version 2
We study the Epstein zeta function $E_n(L,s)$ for $s>\frac{n}{2}$ and determine for fixed $c>\frac{1}{2}$ the value distribution and moments of $E_n(\cdot,cn)$ (suitably normalized) as $n\to\infty$. We further discuss the random function $c\mapsto E_n(\cdot,cn)$ for $c\in[A,B]$ with $\frac{1}{2}<A<B$ and determine its limit distribution as $n\to\infty$.
Comments: 30 pages; revised statement of Proposition 2.1
Journal: Journal of Number Theory 131 (2011) 1176-1208
Categories: math.NT
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1105.2847 [math.NT] (Published 2011-05-13)
On the value distribution of the Epstein zeta function in the critical strip
arXiv:2006.02997 [math.NT] (Published 2020-06-04)
Non-Vanishing of Derivatives of L-Functions of Hilbert Modular Forms in The Critical Strip
arXiv:1008.4970 [math.NT] (Published 2010-08-29)
Bounding $ζ(s)$ in the critical strip