arXiv:1005.4883 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Disordered Topological Insulators via $C^*$-Algebras
Published 2010-05-26, updated 2010-12-28Version 2
The theory of almost commuting matrices can be used to quantify topological obstructions to the existence of localized Wannier functions with time-reversal symmetry in systems with time-reversal symmetry and strong spin-orbit coupling. We present a numerical procedure that calculates a Z_2 invariant using these techniques, and apply it to a model of HgTe. This numerical procedure allows us to access sizes significantly larger than procedures based on studying twisted boundary conditions. Our numerical results indicate the existence of a metallic phase in the presence of scattering between up and down spin components, while there is a sharp transition when the system decouples into two copies of the quantum Hall effect. In addition to the Z_2 invariant calculation in the case when up and down components are coupled, we also present a simple method of evaluating the integer invariant in the quantum Hall case where they are decoupled.