arXiv:1005.3786 [math-ph]AbstractReferencesReviewsResources
Quantum mechanics and classical trajectories
Published 2010-05-20, updated 2011-07-28Version 2
The classical limit $\hbar$->0 of quantum mechanics is known to be delicate, in particular there seems to be no simple derivation of the classical Hamilton equation, starting from the Schr\"odinger equation. In this paper I elaborate on an idea of M. Reuter to represent wave functions by parallel sections of a flat vector bundle over phase space, using the connection of Fedosov's construction of deformation quantization. This generalizes the ordinary Schr\"odinger representation, and allows naturally for a description of quantum states in terms of a curve plus a wave function. Hamilton's equation arises in this context as a condition on the curve, ensuring the dynamics to split into a classical and a quantum part.