arXiv Analytics

Sign in

arXiv:1005.2880 [cs.IT]AbstractReferencesReviewsResources

General Classes of Lower Bounds on the Probability of Error in Multiple Hypothesis Testing

Tirza Routtenberg, Joseph Tabrikian

Published 2010-05-17Version 1

In this paper, two new classes of lower bounds on the probability of error for $m$-ary hypothesis testing are proposed. Computation of the minimum probability of error which is attained by the maximum a-posteriori probability (MAP) criterion is usually not tractable. The new classes are derived using Holder's inequality and reverse Holder's inequality. The bounds in these classes provide good prediction of the minimum probability of error in multiple hypothesis testing. The new classes generalize and extend existing bounds and their relation to some existing upper bounds is presented. It is shown that the tightest bounds in these classes asymptotically coincide with the optimum probability of error provided by the MAP criterion for binary or multiple hypothesis testing problem. These bounds are compared with other existing lower bounds in several typical detection and classification problems in terms of tightness and computational complexity.

Comments: submitted to IEEE Trans. on Information Theory
Categories: cs.IT, math.IT
Related articles: Most relevant | Search more
arXiv:0902.0133 [cs.IT] (Published 2009-02-01)
New Algorithms and Lower Bounds for Sequential-Access Data Compression
arXiv:1703.00188 [cs.IT] (Published 2017-03-01)
Lower Bounds on Exponential Moments of the Quadratic Error in Parameter Estimation
arXiv:1911.09944 [cs.IT] (Published 2019-11-22)
Covering Codes for Insertions and Deletions