arXiv:1005.0315 [math.NT]AbstractReferencesReviewsResources
The Repulsion Motif in Diophantine Equations
Published 2010-05-03, updated 2010-05-27Version 3
Problems related to the existence of integral and rational points on cubic curves date back at least to Diophantus. A significant step in the modern theory of these equations was made by Siegel, who proved that a non-singular plane cubic equation has only finitely many integral solutions. Examples show that simple equations can have inordinately large integral solutions in comparison to the size of their coefficients. A conjecture of Hall attempts to ameliorate this by bounding the size of integral solutions simply in terms of the coefficients of the defining equation. It turns out that a similar phenomenon seems, conjecturally, to be at work for solutions which are close to being integral in another sense. We describe these conjectures as an illustration of an underlying motif - repulsion - in the theory of Diophantine equations.