arXiv Analytics

Sign in

arXiv:1004.5307 [math.CA]AbstractReferencesReviewsResources

Haj\lasz-Sobolev Imbedding and Extension

Yuan Zhou

Published 2010-04-29, updated 2010-04-30Version 2

The author establishes some geometric criteria for a Haj\lasz-Sobolev $\dot M^{s,\,p}_\ball$-extension (resp. $\dot M^{s,\,p}_\ball$-imbedding) domain of ${\mathbb R}^n$ with $n\ge2$, $s\in(0,\,1]$ and $p\in[n/s,\,\infty]$ (resp. $p\in(n/s,\,\infty]$). In particular, the author proves that a bounded finitely connected planar domain $\boz$ is a weak $\alpha$-cigar domain with $\alpha\in(0,\,1)$ if and only if $\dot F^s_{p,\,\infty}({\mathbb R}^2)|_\boz=\dot M^{s,\,p}_\ball(\boz)$ for some/all $s\in[\alpha,\,1)$ and $p=(2-\az)/(s-\alpha)$, where $\dot F^s_{p,\,\infty}({\mathbb R}^2)|_\boz$ denotes the restriction of the Triebel-Lizorkin space $\dot F^s_{p,\,\infty}({\mathbb R}^2) $ on $\boz$.

Comments: submitted
Journal: J. Math. Anal. Appl. 382 (2011) 577-593
Categories: math.CA, math.AP, math.FA
Subjects: 46E35
Related articles: Most relevant | Search more
arXiv:1507.08004 [math.CA] (Published 2015-07-29)
Characterizations of Besov and Triebel-Lizorkin Spaces via Averages on Balls
arXiv:1601.03467 [math.CA] (Published 2016-01-14)
Littlewood-Paley Characterizations of Hajłasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls
arXiv:1004.5304 [math.CA] (Published 2010-04-29)
Criteria for Optimal Global Integrability of Hajłasz-Sobolev Functions