arXiv Analytics

Sign in

arXiv:1004.4665 [math.PR]AbstractReferencesReviewsResources

A note on fluctuations for internal diffusion limited aggregation

Amine Asselah, Alexandre Gaudilliere

Published 2010-04-26, updated 2010-05-28Version 2

We consider a cluster growth model on Z^d, called internal diffusion limited aggregation (internal DLA). In this model, random walks start at the origin, one at a time, and stop moving when reaching a site not occupied by previous walks. It is known that the asymptotic shape of the cluster is spherical. Also, when dimension is 2 or more, and when the cluster has volume $n^d$, it is known that fluctuations of the radius are at most of order $n^{1/3}$. We improve this estimate to $n^{1/(d+1)}$, in dimension 3 or more. In so doing, we introduce a closely related cluster growth model, that we call the flashing process, whose fluctuations are controlled easily and accurately. This process is coupled to internal DLA to yield the desired bound. Part of our proof adapts the approach of Lawler, Bramson and Griffeath, on another space scale, and uses a sharp estimate (written by Blachere in our Appendix) on the expected time spent by a random walk inside an annulus.

Comments: 32 pages, with an appendix of S.Blachere. Correction of typos
Categories: math.PR
Subjects: 60K35, 82B24, 60J45
Related articles: Most relevant | Search more
arXiv:1309.3444 [math.PR] (Published 2013-09-13, updated 2014-01-27)
Fluctuations for internal DLA on the Comb
arXiv:math/0501095 [math.PR] (Published 2005-01-06)
The divergence of fluctuations for the shape on first passage percolation
arXiv:1310.5063 [math.PR] (Published 2013-10-18)
Internal DLA for cylinders