arXiv Analytics

Sign in

arXiv:1004.1571 [math.PR]AbstractReferencesReviewsResources

Ergodic BSDEs under weak dissipative assumptions

Arnaud Debussche, Ying Hu, Gianmario Tessitore

Published 2010-04-09Version 1

In this paper we study ergodic backward stochastic differential equations (EBSDEs) dropping the strong dissipativity assumption needed in the previous work. In other words we do not need to require the uniform exponential decay of the difference of two solutions of the underlying forward equation, which, on the contrary, is assumed to be non degenerate. We show existence of solutions by use of coupling estimates for a non-degenerate forward stochastic differential equations with bounded measurable non-linearity. Moreover we prove uniqueness of "Markovian" solutions exploiting the recurrence of the same class of forward equations. Applications are then given to the optimal ergodic control of stochastic partial differential equations and to the associated ergodic Hamilton-Jacobi-Bellman equations.

Related articles: Most relevant | Search more
arXiv:1406.4329 [math.PR] (Published 2014-06-17, updated 2015-11-10)
Ergodic BSDEs with jumps and time dependence
arXiv:2111.10597 [math.PR] (Published 2021-11-20, updated 2022-12-16)
A new monotonicity condition for ergodic BSDEs and ergodic control with super-quadratic Hamiltonians
arXiv:1310.5498 [math.PR] (Published 2013-10-21, updated 2015-01-15)
Ergodic BSDEs and related PDEs with Neumann boundary conditions under weak dissipative assumptions