arXiv:1004.0986 [math.NT]AbstractReferencesReviewsResources
Equidistribution of Algebraic Numbers of Norm One in Quadratic Number Fields
Kathleen L. Petersen, Christopher D. Sinclair
Published 2010-04-06Version 1
Given a fixed quadratic extension K of Q, we consider the distribution of elements in K of norm 1 (denoted N). When K is an imaginary quadratic extension, N is naturally embedded in the unit circle in C and we show that it is equidistributed with respect to inclusion as ordered by the absolute Weil height. By Hilbert's Theorem 90, an element in N can be written as \alpha/\bar{\alpha} for some \alpha \in O_K, which yields another ordering of \mathcal N given by the minimal norm of the associated algebraic integers. When K is imaginary we also show that N is equidistributed in the unit circle under this norm ordering. When K is a real quadratic extension, we show that N is equidistributed with respect to norm, under the map \beta \mapsto \log| \beta | \bmod{\log | \epsilon^2 |} where \epsilon is a fundamental unit of O_K.