arXiv Analytics

Sign in

arXiv:1003.4808 [math.GT]AbstractReferencesReviewsResources

Quantum Field Theory and the Volume Conjecture

Tudor Dimofte, Sergei Gukov

Published 2010-03-25, updated 2010-03-26Version 2

The volume conjecture states that for a hyperbolic knot K in the three-sphere S^3 the asymptotic growth of the colored Jones polynomial of K is governed by the hyperbolic volume of the knot complement S^3\K. The conjecture relates two topological invariants, one combinatorial and one geometric, in a very nonobvious, nontrivial manner. The goal of the present lectures is to review the original statement of the volume conjecture and its recent extensions and generalizations, and to show how, in the most general context, the conjecture can be understood in terms of topological quantum field theory. In particular, we consider: a) generalization of the volume conjecture to families of incomplete hyperbolic metrics; b) generalization that involves not only the leading (volume) term, but the entire asymptotic expansion in 1/N; c) generalization to quantum group invariants for groups of higher rank; and d) generalization to arbitrary links in arbitrary three-manifolds.

Comments: 32 pages, 6 figures; acknowledgements updated
Journal: Contemporary Mathematics 541 (2011), p.41-67
Categories: math.GT, hep-th, math.QA
Subjects: 58J28, 81T45
Related articles: Most relevant | Search more
arXiv:math/0503414 [math.GT] (Published 2005-03-21, updated 2006-08-10)
Topological Quantum Field Theory and the Nielsen-Thurston classification of M(0,4)
arXiv:1612.09353 [math.GT] (Published 2016-12-30)
Generalizations of intersection homology with duality over the integers
arXiv:2301.07338 [math.GT] (Published 2023-01-18)
Generalizations of Chainability and Compactness, and the Hypertopologies