arXiv:1003.1156 [math-ph]AbstractReferencesReviewsResources
Feynman-diagrammatic description of the asymptotics of the time evolution operator in quantum mechanics
Published 2010-03-04, updated 2010-09-04Version 2
We describe the "Feynman diagram" approach to nonrelativistic quantum mechanics on R^n, with magnetic and potential terms. In particular, for each classical path \gamma connecting points q_0 and q_1 in time t, we define a formal power series V_\gamma(t,q_0,q_1) in \hbar, given combinatorially by a sum of diagrams that each represent finite-dimensional convergent integrals. We prove that exp(V_\gamma) satisfies Schr\"odinger's equation, and explain in what sense the t\to 0 limit approaches the \delta distribution. As such, our construction gives explicitly the full \hbar\to 0 asymptotics of the fundamental solution to Schr\"odinger's equation in terms of solutions to the corresponding classical system. These results justify the heuristic expansion of Feynman's path integral in diagrams.