arXiv:1003.0328 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Symmetry properties of vibrational modes in graphene nanoribbons
Roland Gillen, Marcel Mohr, Janina Maultzsch
Published 2010-03-01Version 1
We present symmetry properties of the lattice vibrations of graphene nanoribbons with pure armchair (AGNR) and zigzag edges (ZGNR). In non-symmorphic nanoribbons the phonon modes at the edge of the Brillouin zone are twofold degenerate, whereas the phonon modes in symmorphic nanoribbons are non-degenerate. We identified the Raman-active and infrared-active modes. We predict 3N and 3(N+1) Raman-active modes for N-ZGNRs and N-AGNRs, respectively (N is the number of dimers per unit cell). These modes can be used for the experimental characterization of graphene nanoribbons. Calculations based on density functional theory suggest that the frequency splitting of the LO and TO in AGNRs (corresponding to the E2g mode in graphene) exhibits characteristic width and family dependence. Further, all graphene nanoribbons have a Raman-active breathing-like mode, the frequency of which is inversely proportional to the nanoribbon width and thus might be used for experimental determination of the width of graphene nanoribbons.