arXiv Analytics

Sign in

arXiv:1002.4442 [math.PR]AbstractReferencesReviewsResources

Asymptotic distribution of singular values of powers of random matrices

Nikita Alexeev, Friedrich Götze, Alexander Tikhomirov

Published 2010-02-24Version 1

Let $x$ be a complex random variable such that ${\E {x}=0}$, ${\E |x|^2=1}$, ${\E |x|^{4} < \infty}$. Let $x_{ij}$, $i,j \in \{1,2,...\}$ be independet copies of $x$. Let ${\Xb=(N^{-1/2}x_{ij})}$, $1\leq i,j \leq N$ be a random matrix. Writing $\Xb^*$ for the adjoint matrix of $\Xb$, consider the product $\Xb^m{\Xb^*}^m$ with some $m \in \{1,2,...\}$. The matrix $\Xb^m{\Xb^*}^m$ is Hermitian positive semi-definite. Let $\lambda_1,\lambda_2,...,\lambda_N$ be eigenvalues of $\Xb^m{\Xb^*}^m$ (or squared singular values of the matrix $\Xb^m$). In this paper we find the asymptotic distribution function \[ G^{(m)}(x)=\lim_{N\to\infty}\E{F_N^{(m)}(x)} \] of the empirical distribution function \[ {F_N^{(m)}(x)} = N^{-1} \sum_{k=1}^N {\mathbb{I}{\{\lambda_k \leq x\}}}, \] where $\mathbb{I} \{A\}$ stands for the indicator function of event $A$. The moments of $G^{(m)}$ satisfy \[ M^{(m)}_p=\int_{\mathbb{R}}{x^p dG^{(m)}(x)}=\frac{1}{mp+1}\binom{mp+p}{p}. \] In Free Probability Theory $M^{(m)}_p$ are known as Fuss--Catalan numbers. With $m=1$ our result turns to a well known result of Marchenko--Pastur 1967.

Comments: 16 pages, 5 figures
Journal: Lithuanian Mathematical Journal, Vol. 50, No. 2, 2010, pp. 121-132
Categories: math.PR
Subjects: 60F05, 15B52
Related articles: Most relevant | Search more
arXiv:1012.2743 [math.PR] (Published 2010-12-13)
On the asymptotic distribution of the singular values of powers of random matrices
arXiv:1403.6001 [math.PR] (Published 2014-03-24, updated 2014-11-03)
Outlier eigenvalues for deformed i.i.d. random matrices
arXiv:2406.13601 [math.PR] (Published 2024-06-19)
Self-normalized Sums in Free Probability Theory