arXiv:1002.0612 [cond-mat.dis-nn]AbstractReferencesReviewsResources
Memory and rejuvenation in a spin glass
R. Mathieu, M. Hudl, P. Nordblad
Published 2010-02-02, updated 2010-05-06Version 3
The temperature dependence of the magnetisation of a Cu(Mn) spin glass ($T_g$ $\approx$ 57 K) has been investigated using weak probing magnetic fields ($H$ = 0.5 or 0 Oe) and specific thermal protocols. The behaviour of the zero-field cooled, thermoremanent and isothermal remanent magnetisation on (re-)cooling the system from a temperature (40 K) where the system has been aged is investigated. It is observed that the measured magnetisation is formed by two parts: (i) a temperature- and observation time-dependent thermally activated relaxational part governed by the age- and temperature-dependent response function and the (latest) field change made at a lower temperature, superposed on (ii) a weakly temperature-dependent frozen-in part. Interestingly we observe that the spin configuration that is imprinted during an elongated halt in the cooling, if it is accompanied by a field induced magnetisation, also includes a unidirectional excess magnetisation that is recovered on returning to the ageing temperature.