arXiv:0912.5000 [math.AT]AbstractReferencesReviewsResources
Classification of Q-trivial Bott manifolds
Published 2009-12-27Version 1
A Bott manifold is a closed smooth manifold obtained as the total space of an iterated $\C P^1$-bundle starting with a point, where each $\C P^1$-bundle is the projectivization of a Whitney sum of two complex line bundles. A \emph{$\Q$-trivial Bott manifold} of dimension $2n$ is a Bott manifold whose cohomology ring is isomorphic to that of $(\CP^1)^n$ with $\Q$-coefficients. We find all diffeomorphism types of $\Q$-trivial Bott manifolds and show that they are distinguished by their cohomology rings with $\Z$-coefficients. As a consequence, we see that the number of diffeomorphism classes in $\Q$-trivial Bott manifolds of dimension $2n$ is equal to the number of partitions of $n$. We even show that any cohomology ring isomorphism between two $\Q$-trivial Bott manifolds is induced by a diffeomorphism.