arXiv Analytics

Sign in

arXiv:0912.1561 [math.PR]AbstractReferencesReviewsResources

Explicit Conditions for the Convergence of Point Processes Associated to Stationary Arrays

Raluca Balan, Sana Louhichi

Published 2009-12-08Version 1

In this article, we consider a stationary array $(X_{j,n})_{1 \leq j \leq n, n \geq 1}$ of random variables with values in $\bR \verb2\2 \{0\}$ (which satisfy some asymptotic dependence conditions), and the corresponding sequence $(N_{n})_{n\geq 1}$ of point processes, where $N_{n}$ has the points $X_{j,n}, 1\leq j \leq n$. Our main result identifies some explicit conditions for the convergence of the sequence $(N_{n})_{n \geq 1}$, in terms of the probabilistic behavior of the variables in the array.

Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1107.2543 [math.PR] (Published 2011-07-13, updated 2015-08-31)
Convergence in law for the branching random walk seen from its tip
arXiv:1205.2682 [math.PR] (Published 2012-05-11, updated 2012-10-05)
Convergence in total variation on Wiener chaos