arXiv:0911.5377 [math.PR]AbstractReferencesReviewsResources
Poisson Thickening
Published 2009-11-28, updated 2013-03-16Version 3
Let X be a Poisson point process of intensity lambda on the real line. A thickening of it is a (deterministic) measurable function f such that the union of X and f(X) is a Poisson point process of intensity lambda' where lambda'>lambda. An equivariant thickening is a thickening which commutes with all shifts of the line. We show that a thickening exists but an equivariant thickening does not. We prove similar results for thickenings which commute only with integer shifts and in the discrete and multi-dimensional settings. This answers 3 questions of Holroyd, Lyons and Soo. We briefly consider also a much more general setup in which we ask for the existence of a deterministic coupling satisfying a relation between two probability measures. We present a conjectured sufficient condition for the existence of such couplings.