arXiv:0911.2992 [q-fin.PR]AbstractReferencesReviewsResources
Asymptotic formulae for implied volatility in the Heston model
Martin Forde, Antoine Jacquier, Aleksandar Mijatovic
Published 2009-11-16, updated 2010-05-18Version 3
In this paper we prove an approximate formula expressed in terms of elementary functions for the implied volatility in the Heston model. The formula consists of the constant and first order terms in the large maturity expansion of the implied volatility function. The proof is based on saddlepoint methods and classical properties of holomorphic functions.
Comments: Presentation in Section 2 has been improved. Theorem 3.1 has been slightly generalised. Figures 2 and 3 now include the at-the-money point.
Categories: q-fin.PR
Keywords: heston model, asymptotic formulae, large maturity expansion, first order terms, saddlepoint methods
Tags: journal article
Related articles: Most relevant | Search more
On refined volatility smile expansion in the Heston model
Asymptotic arbitrage in the Heston model
arXiv:2104.09476 [q-fin.PR] (Published 2021-04-19)
Interpretability in deep learning for finance: a case study for the Heston model