arXiv Analytics

Sign in

arXiv:0911.0434 [math.OC]AbstractReferencesReviewsResources

On the convergence of an efficient algorithm for Kullback-Leibler approximation of spectral densities

Augusto Ferrante, Federico Ramponi, Francesco Ticozzi

Published 2009-11-02Version 1

This paper deals with a method for the approximation of a spectral density function among the solutions of a generalized moment problem a` la Byrnes/Georgiou/Lindquist. The approximation is pursued with respect to the Kullback-Leibler pseudo-distance, which gives rise to a convex optimization problem. After developing the variational analysis, we discuss the properties of an efficient algorithm for the solution of the corresponding dual problem, based on the iteration of a nonlinear map in a bounded subset of the dual space. Our main result is the proof of local convergence of the latter, established as a consequence of the Central Manifold Theorem. Supported by numerical evidence, we conjecture that, in the mentioned bounded set, the convergence is actually global.

Related articles: Most relevant | Search more
arXiv:1310.7063 [math.OC] (Published 2013-10-26, updated 2015-07-01)
On the Convergence of Decentralized Gradient Descent
arXiv:0803.2211 [math.OC] (Published 2008-03-14, updated 2010-05-09)
On Conditions for Convergence to Consensus
arXiv:1801.08691 [math.OC] (Published 2018-01-26)
On Quasi-Newton Forward--Backward Splitting: Proximal Calculus and Convergence